
Compiling Constraint Networks into Multivalued
Decomposable Decision Graphs

Frédéric Koriche Jean-Marie Lagniez Pierre Marquis Samuel Thomas
CRIL, Université d’Artois & CNRS, Lens France

{koriche,lagniez,marquis,thomas}@cril.fr

Motivations & Contributions
Constraint programming is a useful approach for representing and solving combinatorial problems
However no performance guarantees are offered for many tasks (consistency, solution counting, solution enumeration, optimization, etc.) in on-line
applications
Knowledge compilation provides guarantees for such tasks, by encoding the constraint network into an appropriate representation
We defined a language MDDG for compiling constraint networks (N), such that all aforementioned tasks can be achieved in polynomial time from
MDDG representations
We designed and evaluated a compiler (cn2mddg) targeting this language

Multivalued Decomposable Decision Graphs (MDDG)
X1

X2

X3 X4

0 1 2

0 1 2

0 1 2 0 1 2

(X2 6= 2) ∨ (X2 = X3 +X4 + 1)

X1 6= X2

X3 > X4

∨

∧ ∧ ∧
〈X2,0〉 〈X2,1〉 〈X2,2〉

∨ ∨ ∨ ∨

>
>

〈X1,1〉〈X1,2〉

〈X3,1〉
〈X4,0〉

>

〈X1,0〉 〈X1,1〉

>

〈X1,0〉〈X1,2〉

>

〈X3,1〉
〈X4,0〉

∨

〈X3,2〉

>

〈X4,0〉〈X4,1〉

compilation

Decision-DNNF corresponds to the proper subset of MDDG where each variable is Boolean
The key tractable queries and transformations offered by Decision-DNNFare also offered by MDDG

A Top-Down Compiler

Following the trace of a solver
Taking into account the structure of the
problem by considering its primal graph

X1 X2

X3

X4

Techniques used

â Component analysis
â Specific caching technique
â Universal constraints
â Specific variable selection heuristic

Caching Technique

Caching is a key technique of any compiler
computing DAG-based representations
Two networks are detected as "equivalent”
when they are identical
For an efficient caching, the size of the
entries must be small

â one stores the current domains of the
current unassigned variables

â ∀Ci ∈ N , if Ci is AC, |Ci| > 2 and
∃Xj ∈ Ci s.t. Xi has been reduced,
then a projection of Ci is saved

Universal Constraints

Universal constraints are constraints that
are necessarily satisfied whatever the val-
ues given to the variables in their scopes
Once detected, a universal constraint is
simply deleted from the current network

1
2
3

4
5
6

X1 X2

X1 6= X2

The objective is to simplify the forthcom-
ing treatments and to promote decompo-
sition

Variable Selection Heuristic

The heuristics used for solution finding are
not dedicated to knowledge compilation
We considered a heuristic bc based on the
concept of betweenness centrality
bc relies on the network structure

bc(Xi) = ΣXj 6=Xi 6=Xk

σXi(Xj , Xk)

σ(Xj , Xk)

Assigning the most central variables is a
way to promote the generation of disjoint
connected components of similar sizes

Y1 Y2 Y3 Y4 Y5

0
6

3
6

4
6

3
6

0
6

Experimental Results
Benchmarks: 173 CNs from 15 data sets (configuration,
scheduling, frequency allocation, . . .)
Each input CN has been compiled into

â a MDDG representation using our compiler cn2mddg
â and

I a CNF using the sparse encoding with a mixed
clause encoding of the constraints

I a Decision-DNNF using the compiler Dsharp

A time limit of 3600s and a total amount of 8GiB of
memory have been considered for each instance

CN CNF - sparse mixed encoding
Name #X #C maxA maxD tw time size #pv #pcl time size

rect-packingrpp09 2196 2353 10 36 19 1673.33 514754 37044 593518 375.66 16118647
ghoulomb3-4-5 2033 2051 11 26 31 15.17 5162 MO MO MO MO
talent-concert 325 352 46 316 52 1277.21 404437 MO MO MO MO
CostasArray10 110 338 4 19 23 10.39 13440 149564 841930 TO -
photophoto2 89 133 21 11 21 499.93 9564220 685555 14326576 TO -
rlfap-scen4 680 3967 2 44 30 3.47 52226 915553 4875002 - MO

renault-mod-32 111 154 10 42 11 20.39 160238 222582 1755876 TO -
renault-mod-11 111 149 10 42 10 16.22 41919 223718 1762294 3538.01 2399273
driverlogw-08c 408 9321 2 11 92 15.63 2931 9528 62825 6.42 139306

à cn2mddg succeeded in compiling 131 instances over 173 (32 TO and 10 MO)
à Dsharp succeeded in compiling 83 instances over 173 (24 TO and 39 MO)

Conclusion and Perspectives
Contribution: A top-down algorithm cn2mddg for compiling finite-domain CNs into MDDGs has been designed and evaluated
Take-home message:

â While a translation to CNF enabling to take advantage of an upstream sat solver can be a competitive approach for
the csp problem, it turns out to be a bad idea when the objective is to compile a constraint network

â Variable selection heuristics for csp vs. variable selection heuristics for compilation

Future work: Implementing additional queries and considering new heuristics for promoting decomposition

